

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.TECH I SEMESTER EXAMINATIONS, APRIL/MAY 2012 ADVANCED FINITE ELEMENT ANALYSIS (MACHINE DESIGN)

Time: 3hours

Max.Marks:60

Answer any five questions All questions carry equal marks

- -
- 1. a) Explain how the weighted residual method is used for solving the beam element.
 - b) Differentiate between plane stress and plane strain elements with two suitable examples and derive their elasticity matrices.
- 2. Derive the strain displacement relation matrix and stiffness matrix for 3-D tetrahedron element using displacement approach.
- 3. a) Derive C^0 , C^1 , C^2 continuity equations for the isoparametric elements and discuss the salient features.
 - b) Derive the shape functions for eight noded quadrilateral element and draw their profiles.
- 4. A square plate of 400 cm X 400 cm is subjected a uniformly distributed load of 5.88 kN/m². The elastic constants used are $E = 2 \times 10^3 \text{ kN/cm}^2$ and poisons ratio is 0.15. If the boundary is simply supported, then calculate the stresses developed in it.
- 5. a) What is the use of Orthogonal functions to derive the stiffness matrix of shells? Explain.
 - b) Derive the shape functions for eight noded shell element and discuss the salient points.
- 6. a) Apply the Galerkin method for the steady state heat conduction equation and arrive general conductivty matrix and thermal load vector.
 - b) Estimate the temperature distribution for the composite slab shown in the figure. The other face of the wall is subjected to heat flux of 400 W/m². $K_1 = 25$ W/m K; $K_2 = 35$ W/m K; $K_3 = 25$ W/m K

$H = 25 W/m^{2}K$ $T_{\alpha} = 40^{0}C$ $T_{\alpha} = 500^{0}C$	К1	K2	K3	
+	1 ^{0.15} m	⊨ ^{0.15}	0.2 m	

- 7. A long thick walled cylindrical pressure vessel of circular cross section with ID = 20 cm and OD = 40 cm is subjected to a temperature of 150^{0} C on the inside surface. Determine the temperature distribution in the cylinder thickness if the outside is exposed to ambient with h = 0.2 W/m²K, T_a = 30^oC. Take thermal conductivity of material as 40 W/mK.
- 8. Write short notes on:
 - a) Transient heat conduction analysis
 - b) Axisymmetric shells.